CHROMBIO. 3661

Note

Determination of a new thromboxane A_2 receptor blocker in biological fluids by capillary gas chromatography with electron-capture detection

V. UEBIS

Boehringer Mannheim GmbH, Chemical Research Division, Bioanalytical Department, Sandhofer Strasse 116, D-6800 Mannheim 31 (F.R.G.)

(First received October 24th, 1986; revised manuscript received February 16th, 1987)

4-[2-(4-Chlorophenylsulphonylamino)ethyl]phenylacetic acid (I, Fig. 1) has been characterized as a specific, selective and long-acting thromboxane A_2 (TXA₂) receptor antagonist. In rats and rabbits it inhibits the increase of arterial blood pressure or antagonizes the constriction of isolated arterial strips stimulated by U 46619⁺ in a dose-related manner. U 46619 is regarded as the stable analogue of the cyclic prostaglandin endoperoxide PGH₂ and acts in a similar way to TXA₂. It also inhibits platelet aggregation induced by U 46619⁺ or arachidonic acid [1-4]. For pharmacokinetic studies in humans we developed recently a simple, sensitive method for the determination of this compound. This method employs internal standard (I.S., 4-[2-(4-chlorophenvlsulphonvlan amino)ethyl)phenylpropanoic acid, II, Fig. 1), liquid-liquid extraction, derivatization and gas chromatography (GC) with electron-capture detection (ECD).

EXPERIMENTAL

Reagents

The reference standards (I and II) were synthesized in our own laboratories [5]. Analytical-grade reagents were used as supplied by the manufacturers. Hydrochloric acid in methanol was prepared by introducing hydrogen chloride gas into methanol (2-3%) by weight).

Apparatus and GC conditions

The GC system consisted of a Hewlett-Packard Model 5710 A with capillary inlet system HP 18740 B, or a 5700 A Model without capillary inlet system, a ⁶³Ni

Fig. 1. Chemical structures of I and II.

electron-capture detector, an HP 7672 A automatic sampler (Hewlett-Packard, Böblingen, F.R.G.) and a Siemens Kompensograph III recorder (Erlangen, F.R.G.).

The measurements were carried out with a 10 m×0.53 mm I.D. mega-bore fused-silica column DB 17 (100% methylphenylpolysiloxane, film thickness 1.0 μ m) from ICT Handelsgesellschaft (Frankfurt, F.R.G.). The operating conditions for routine analysis were: oven temperature, 260°C; injection port temperature, 280-300°C; detector temperature, 300°C; injection volume, 1 μ l; carrier gas, hydrogen at 15 ml/min; make-up gas, 5% methane in argon at 30 ml/min. The total analysis time was ca. 8-10 min. Likewise it is possible to use a 30 m×0.53 mm I.D. mega-bore fused-cilica column DB 5 (95% dimethyl-5% diphenylpolysiloxane, film thickness 1.5 μ m)) from ICT; the carrier gas was then hydrogen at 30 ml/min, and the make-up gas was 5% methane in argon at 10 ml/min.

Procedure

A 1-ml sample of plasma (serum), or 0.5 ml of urine, was mixed with 100 μ l of I.S. (10 μ g/ml in methanol for plasma samples, 100 μ g/ml for urine samples). After the addition of 5 ml of diethyl ether and 50 μ l of concentrated hydrochloric acid, the tubes were shaken in a tube rack on a reciprocating shaker for 15–20 min and centrifuged for 5 min at 4000 g. The organic phase was transferred to a 10-ml conical centrifuge tube and evaporated to dryness at 50°C under a stream of nitrogen. For derivatization the residue was taken up in 100–200 μ l of methanolic hydrochloric acid and heated at 50°C for 15 min. After evaporation to dryness, the residue was dissolved in 200 μ l of methanol. The solution was transferred to a sample vial and evaporated to dryness. Depending on the sample concentration, the residue was taken up in 25–1000 μ l of methanol. The tubes were closed and vortexed, and 1 μ l was injected into the GC system.

Calibration graphs were prepared by assaying plasma (urine) samples to which known amounts of standard (I) and I.S. (II) had been added. Peak-height ratios of I relative to II were plotted versus the added amounts of I.

For the experimental fit of the data-points to the regression line, three modes of regression are possible:

y=a+bx (linear regression) $y=ax^{b}$ (powerfit regression) $y=a+bx+b_{1}x^{2}$ (non-linear regression)

where x = peak-height ratio and y = concentration of I in ng/ml. The coefficients of correlation of the different regression equations were routinely calculated to

Fig. 2. Chromatogram of a drug-free control human plasma sample. Column: DB 17.

Fig. 3. Chromatogram of a human plasma sample spiked with 960 ng/ml I and 1000 ng/ml II. Column: DB 17.

Fig. 4. Chromatogram of an extract of a 1-ml human plasma sample of a volunteer taken 10 h after a single oral dose of 400 mg of I. The concentration is found to be 123.0 mg/ml I (1000 mg/ml I.S. Column: DB 17.

evaluate the fit of the calibration data to the regression line (>0.99). The function with the best correlation was used for the calibration of the sample concentrations.

RESULTS

Specificity

Drug-free control human plasma shows no significant peaks at the retention times of I or II when analysed by this method (Fig. 2).

Fig. 3 shows the chromatogram of an extract of 1 ml of human plasma spiked with 960 ng/ml I and 1000 ng/ml I.S.

Fig. 4 shows the chromatogram of an extract of 1 ml human plasma taken 10 h after an oral dose of 400 mg of I.

The identity of I and II in the derivatized form as the methyl ester was proved and confirmed with gas chromatography-mass spectrometry.

PLASMA DATA FOR PRECISION AND ACCURACY FROM A 2 μ g/ml POOL OF COMPOUND I					
Work-up	Concentration (mean \pm S.D.)	R.S.D.			

$(\mu g/ml)$ (%) 1 1.91 ± 0.02 0.77 2 1.93 ± 0.04 2.00 3 2.20 ± 0.03 1.574 2.09 ± 0.11 5.36 5 2.16 ± 0.06 2.576 2.05 ± 0.03 1.65 Mean 5.92 2.05 ± 0.12

Accuracy and precision

To determine the between-run and the within-run precision and accuracy, a plasma pool was spiked with $2 \mu g/ml$ I. With six different calibration curves six samples from this pool in each case were analysed, giving a total number of 36 samples. The values of the mean and the S.D. calculated from the six measurements of each work-up represent the within-run accuracy and precision. The between-run accuracy and precision are indicated by the mean and S.D. of the six within-run calculations (Table I). This procedure was used analogously for the analysis of urine samples spiked with $25 \mu g/ml$ I (Table II).

Recovery

The recovery of I and II in plasma and urine was studied. The procedure used for this study is shown in Fig. 5.

Work-up 2 represents 100% recovery of compound I and work-up 3 100% recovery of the I.S. Each work-up was repeated ten times. For each set, mean peak heights have been calculated and percentage recovery of I and II determined by comparing samples 1 and 2 and samples 1 and 3, respectively. Recovery from

Work-up	Concentration (mean \pm S.D.) (μ g/ml)	R.S.D. (%)	
1	21.11±0.26	1.24	
2	21.33 ± 0.51	2.37	
3	23.92 ± 0.56	2.34	
4	24.36 ± 0.34	1.41	
5	25.12 ± 0.20	0.80	
6	21.13±0.29	1.37	
Mean	22.83 ± 1.74	7.61	

TABLE II

URINE DATA FOR PRECISION AND ACCURACY FROM A 25 $\mu g/ml$ POOL OF COMPOUND I

* Methanolic standard solution: 10 µg/ml for plasma samples, 100 µg/ml for urine samples ** Methanolic I.S. solution: 10 µg/ml for plasma samples, 50 µg/ml for urine samples

Fig. 5. Procedure for recovery study.

plasma samples was 63.4% for I and 61.3% for I.S. Recovery from urine samples was 86.1% for I and 87.8% for I.S.

Detection limit

Ten individual serum standards and twelve individual urine standards in the lower range of the calibration curve (30, 50 and 100 ng/ml for serum; 50, 100 and 150 ng/ml for urine) were assayed, and the value of the mean and the S.D. were calculated. The limit of detection (DL) was obtained according to the following equation:

$$DL = X + \frac{3sn + 3sn - 1 + \ldots + 3s}{n}$$

where X is the mean value of the blank signal, sn is the S.D. of an individual concentration range assayed, and n is the number of concentration ranges assayed. Based on reference calibration curves of 0–500 ng/ml for serum and 0–200 ng/ml for urine, the DL for compound I was found to be 8.2 ng/ml in serum and 29.4 ng/ml in urine.

CONCLUSION

This paper reports a sensitive and selective GC-ECD method for the detection of a new thromboxane A_2 receptor blocker in plasma (serum) and urine samples. Diethyl ether was found to be an efficient solvent for single-step plasma (urine) extraction, providing low-level drug quantitation without any interference from biological fluid constituents. The method permits the routine analysis of the large number (up to 100 a day) of samples required for pharmacokinetic studies.

ACKNOWLEDGEMENTS

The author is grateful to Mrs. J. Glassl and Mr. A. Schmid for excellent technical assistance, and to Mrs. D. Hildebrand for preparing the manuscript.

REFERENCES

- 1 K. Stegmeier, J. Pill and H. Patscheke, Arch. Pharmacol., 332 (Suppl.) (1986) 236.
- 2 K. Stegmeier, J. Pill. B. Müller-Beckmann, G. Sponer and H. Patscheke, Internal Conference on Leukotrienes and Prostanoids in Health and Disease, Tel Aviv, Oct. 20-25, 1985, Abstract Nos. 10 and 11.
- 3 K. Stegmeier, F. Hartig, J. Pill and H. Patscheke, Proc. Eur. Dialysis Transplant Assoc. Eur. Renal Assoc., 22 (1985) 1012.
- 4 K. Stegmeier, F. Hartig, J. Pill and H. Patscheke, J. Clin. Chem. Clin. Biochem., 23 (1985) 548.
- 5 European Patent Application EP 31954 (1981).